1ur Agency

Overview

  • Posted Jobs 0
  • Viewed 8
  • Employer Roles Care provider / aged care facility
Bottom Promo

Company Description

Artificial General Intelligence

Artificial basic intelligence (AGI) is a type of expert system (AI) that matches or exceeds human cognitive capabilities across a large range of cognitive jobs. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), valetinowiki.racing on the other hand, refers to AGI that significantly surpasses human cognitive abilities. AGI is considered among the definitions of strong AI.

Creating AGI is a primary objective of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study recognized 72 active AGI research and development tasks across 37 nations. [4]

The timeline for accomplishing AGI remains a subject of ongoing argument amongst researchers and professionals. Since 2023, some argue that it may be possible in years or decades; others preserve it may take a century or longer; a minority believe it might never ever be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed issues about the quick progress towards AGI, recommending it might be accomplished quicker than lots of expect. [7]

There is dispute on the precise definition of AGI and concerning whether modern large language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical topic in sci-fi and futures studies. [9] [10]

Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have mentioned that reducing the danger of human termination positioned by AGI ought to be a worldwide top priority. [14] [15] Others find the development of AGI to be too remote to present such a risk. [16] [17]

Terminology

AGI is also understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]

Some scholastic sources reserve the term “strong AI” for computer system programs that experience life or awareness. [a] On the other hand, weak AI (or narrow AI) is able to fix one specific problem but lacks general cognitive capabilities. [22] [19] Some academic sources utilize “weak AI” to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as human beings. [a]

Related principles include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is much more generally intelligent than human beings, [23] while the idea of transformative AI relates to AI having a large effect on society, for instance, similar to the agricultural or industrial transformation. [24]

A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, skilled, professional, virtuoso, and superhuman. For example, a qualified AGI is specified as an AI that outshines 50% of competent grownups in a wide variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined but with a threshold of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]

Characteristics

Various popular definitions of intelligence have actually been proposed. One of the leading propositions is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular approaches. [b]

Intelligence qualities

Researchers normally hold that intelligence is required to do all of the following: [27]

factor, use technique, fix puzzles, and make judgments under unpredictability
represent understanding, including typical sense understanding
strategy
find out
– communicate in natural language
– if required, integrate these skills in completion of any offered objective

Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) think about additional traits such as imagination (the ability to form unique mental images and concepts) [28] and autonomy. [29]

Computer-based systems that display numerous of these capabilities exist (e.g. see computational creativity, automated thinking, choice assistance system, robot, evolutionary computation, smart agent). There is dispute about whether modern-day AI systems have them to an appropriate degree.

Physical characteristics

Other abilities are considered preferable in intelligent systems, as they may impact intelligence or help in its expression. These consist of: [30]

– the ability to sense (e.g. see, hear, etc), and
– the ability to act (e.g. move and manipulate items, modification area to explore, and so on).

This includes the capability to detect and react to threat. [31]

Although the capability to sense (e.g. see, hear, etc) and the ability to act (e.g. relocation and control things, modification area to check out, and so on) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that large language designs (LLMs) may currently be or become AGI. Even from a less positive viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is adequate, offered it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has never been proscribed a specific physical embodiment and hence does not demand a capability for mobility or conventional “eyes and ears”. [32]

Tests for human-level AGI

Several tests indicated to confirm human-level AGI have been thought about, including: [33] [34]

The idea of the test is that the maker has to try and pretend to be a male, by responding to concerns put to it, and it will just pass if the pretence is reasonably persuading. A considerable portion of a jury, who need to not be expert about makers, must be taken in by the pretence. [37]

AI-complete issues

A problem is informally called “AI-complete” or “AI-hard” if it is believed that in order to solve it, one would need to carry out AGI, since the solution is beyond the capabilities of a purpose-specific algorithm. [47]

There are many problems that have been conjectured to require general intelligence to resolve as well as human beings. Examples consist of computer system vision, natural language understanding, and handling unforeseen scenarios while resolving any real-world problem. [48] Even a specific job like translation requires a maker to check out and compose in both languages, follow the author’s argument (reason), understand the context (knowledge), and faithfully replicate the author’s original intent (social intelligence). All of these problems require to be resolved concurrently in order to reach human-level device performance.

However, a lot of these jobs can now be performed by modern big language designs. According to Stanford University’s 2024 AI index, AI has actually reached human-level performance on numerous criteria for reading comprehension and visual thinking. [49]

History

Classical AI

Modern AI research study started in the mid-1950s. [50] The very first generation of AI scientists were convinced that synthetic general intelligence was possible which it would exist in simply a few decades. [51] AI pioneer Herbert A. Simon composed in 1965: “devices will be capable, within twenty years, of doing any work a man can do.” [52]

Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke’s character HAL 9000, who embodied what AI researchers believed they could produce by the year 2001. AI leader Marvin Minsky was a specialist [53] on the task of making HAL 9000 as realistic as possible according to the agreement predictions of the time. He stated in 1967, “Within a generation … the issue of developing ‘synthetic intelligence’ will considerably be solved”. [54]

Several classical AI tasks, such as Doug Lenat’s Cyc job (that started in 1984), and Allen Newell’s Soar project, were directed at AGI.

However, in the early 1970s, it ended up being obvious that researchers had actually grossly ignored the difficulty of the task. Funding firms became doubtful of AGI and put scientists under increasing pressure to produce beneficial “applied AI“. [c] In the early 1980s, Japan’s Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like “carry on a casual discussion”. [58] In action to this and the success of professional systems, both market and federal government pumped cash into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in twenty years, AI scientists who forecasted the imminent accomplishment of AGI had been mistaken. By the 1990s, AI researchers had a track record for making vain pledges. They became reluctant to make forecasts at all [d] and avoided reference of “human level” synthetic intelligence for worry of being identified “wild-eyed dreamer [s]. [62]

Narrow AI research

In the 1990s and early 21st century, mainstream AI achieved commercial success and scholastic respectability by concentrating on particular sub-problems where AI can produce verifiable results and business applications, such as speech acknowledgment and recommendation algorithms. [63] These “applied AI” systems are now used extensively throughout the innovation market, and research in this vein is heavily funded in both academia and market. Since 2018 [upgrade], development in this field was considered an emerging pattern, and a mature phase was anticipated to be reached in more than ten years. [64]

At the millenium, lots of mainstream AI scientists [65] hoped that strong AI could be established by combining programs that resolve various sub-problems. Hans Moravec wrote in 1988:

I am positive that this bottom-up path to expert system will one day satisfy the conventional top-down route majority way, all set to offer the real-world skills and the commonsense knowledge that has actually been so frustratingly evasive in thinking programs. Fully smart devices will result when the metaphorical golden spike is driven joining the 2 efforts. [65]

However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:

The expectation has often been voiced that “top-down” (symbolic) approaches to modeling cognition will in some way meet “bottom-up” (sensory) approaches someplace in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is actually just one viable path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never ever be reached by this path (or vice versa) – nor is it clear why we need to even attempt to reach such a level, since it appears arriving would simply total up to uprooting our symbols from their intrinsic significances (thereby simply lowering ourselves to the functional equivalent of a programmable computer). [66]

Modern synthetic basic intelligence research

The term “synthetic general intelligence” was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises “the capability to please objectives in a vast array of environments”. [68] This type of AGI, characterized by the ability to maximise a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was also called universal expert system. [70]

The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as “producing publications and preliminary results”. The first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university’s Artificial Brain Laboratory and OpenCog. The very first university course was given in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a number of guest lecturers.

Since 2023 [update], a little number of computer system researchers are active in AGI research study, and many add to a series of AGI conferences. However, increasingly more researchers are interested in open-ended learning, [76] [77] which is the concept of allowing AI to continually find out and innovate like humans do.

Feasibility

Since 2023, the development and potential accomplishment of AGI remains a subject of intense debate within the AI neighborhood. While traditional agreement held that AGI was a distant goal, recent improvements have actually led some researchers and industry figures to claim that early forms of AGI might currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that “machines will be capable, within twenty years, of doing any work a man can do”. This prediction failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century because it would require “unforeseeable and essentially unforeseeable breakthroughs” and a “scientifically deep understanding of cognition”. [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern-day computing and human-level expert system is as large as the gulf between existing area flight and useful faster-than-light spaceflight. [80]

An additional obstacle is the absence of clarity in defining what intelligence entails. Does it require awareness? Must it display the ability to set objectives in addition to pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding needed? Does intelligence require clearly reproducing the brain and its specific faculties? Does it need feelings? [81]

Most AI researchers believe strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, however that the present level of development is such that a date can not precisely be anticipated. [84] AI specialists’ views on the expediency of AGI wax and subside. Four surveys performed in 2012 and 2013 recommended that the typical estimate amongst specialists for when they would be 50% confident AGI would arrive was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% responded to with “never ever” when asked the very same question but with a 90% confidence rather. [85] [86] Further current AGI progress factors to consider can be found above Tests for verifying human-level AGI.

A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that “over [a] 60-year timespan there is a strong predisposition towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made”. They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]

In 2023, Microsoft researchers released a comprehensive assessment of GPT-4. They concluded: “Given the breadth and depth of GPT-4’s abilities, our company believe that it might fairly be considered as an early (yet still insufficient) version of an artificial basic intelligence (AGI) system.” [88] Another study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of creativity. [89] [90]

Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has already been attained with frontier designs. They wrote that unwillingness to this view originates from four main factors: a “healthy apprehension about metrics for AGI”, an “ideological dedication to alternative AI theories or methods”, a “dedication to human (or biological) exceptionalism”, or a “issue about the economic implications of AGI”. [91]

2023 also marked the development of large multimodal designs (big language models efficient in processing or creating several techniques such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the very first of a series of models that “spend more time thinking before they react”. According to Mira Murati, this capability to believe before reacting represents a new, additional paradigm. It enhances design outputs by investing more computing power when creating the response, whereas the model scaling paradigm improves outputs by increasing the model size, training data and training calculate power. [93] [94]

An OpenAI employee, Vahid Kazemi, declared in 2024 that the business had actually attained AGI, specifying, “In my viewpoint, we have actually already accomplished AGI and it’s much more clear with O1.” Kazemi clarified that while the AI is not yet “better than any human at any job”, it is “much better than a lot of people at most tasks.” He likewise resolved criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing process to the scientific approach of observing, assuming, and verifying. These declarations have stimulated debate, as they count on a broad and unconventional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI’s models show exceptional adaptability, they may not completely satisfy this standard. Notably, Kazemi’s remarks came quickly after OpenAI got rid of “AGI” from the regards to its collaboration with Microsoft, prompting speculation about the business’s strategic intentions. [95]

Timescales

Progress in artificial intelligence has actually historically gone through periods of fast development separated by periods when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to produce area for further progress. [82] [98] [99] For instance, the hardware readily available in the twentieth century was not enough to execute deep knowing, which requires great deals of GPU-enabled CPUs. [100]

In the intro to his 2006 book, [101] Goertzel says that quotes of the time required before a really flexible AGI is constructed vary from ten years to over a century. Since 2007 [upgrade], the agreement in the AGI research community appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI researchers have provided a wide variety of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints found a predisposition towards predicting that the beginning of AGI would take place within 16-26 years for modern-day and historical forecasts alike. That paper has actually been criticized for how it classified opinions as expert or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, significantly better than the second-best entry’s rate of 26.3% (the traditional technique utilized a weighted amount of scores from various pre-defined classifiers). [105] AlexNet was concerned as the preliminary ground-breaker of the current deep knowing wave. [105]

In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly available and freely available weak AI such as Google AI, Apple’s Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in first grade. A grownup comes to about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language design capable of performing many varied jobs without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]

In the exact same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called “Project December”. OpenAI requested modifications to the chatbot to adhere to their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a “general-purpose” system efficient in performing more than 600 different jobs. [110]

In 2023, Microsoft Research published a study on an early version of OpenAI’s GPT-4, contending that it showed more basic intelligence than previous AI models and showed human-level efficiency in jobs spanning several domains, such as mathematics, coding, and law. This research study stimulated an argument on whether GPT-4 might be considered an early, insufficient version of artificial basic intelligence, emphasizing the requirement for further expedition and evaluation of such systems. [111]

In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]

The concept that this stuff could in fact get smarter than people – a couple of individuals believed that, […] But the majority of people thought it was way off. And I believed it was method off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer think that.

In May 2023, Demis Hassabis similarly stated that “The progress in the last couple of years has been pretty amazing”, and that he sees no factor why it would decrease, anticipating AGI within a decade or even a few years. [113] In March 2024, Nvidia’s CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would can passing any test at least as well as human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI worker, approximated AGI by 2027 to be “noticeably plausible”. [115]

Whole brain emulation

While the development of transformer models like in ChatGPT is considered the most appealing path to AGI, [116] [117] entire brain emulation can serve as an alternative approach. With whole brain simulation, a brain model is constructed by scanning and mapping a biological brain in detail, and then copying and mimicing it on a computer system or another computational device. The simulation design should be sufficiently faithful to the initial, so that it acts in virtually the same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been discussed in synthetic intelligence research study [103] as a method to strong AI. Neuroimaging technologies that might deliver the essential detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will appear on a similar timescale to the computing power required to replicate it.

Early estimates

For low-level brain simulation, an extremely effective cluster of computer systems or GPUs would be needed, provided the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by adulthood. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain’s processing power, based on an easy switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at different quotes for the hardware needed to equate to the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a “computation” was comparable to one “floating-point operation” – a step used to rate present supercomputers – then 1016 “calculations” would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He utilized this figure to anticipate the required hardware would be readily available at some point between 2015 and 2025, if the exponential growth in computer system power at the time of composing continued.

Current research study

The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially comprehensive and openly accessible atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.

Criticisms of simulation-based techniques

The synthetic nerve cell design presumed by Kurzweil and utilized in numerous current artificial neural network executions is basic compared with biological neurons. A brain simulation would likely have to catch the detailed cellular behaviour of biological neurons, currently understood only in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers a number of orders of magnitude larger than Kurzweil’s quote. In addition, the estimates do not account for glial cells, which are understood to play a function in cognitive processes. [125]

An essential criticism of the simulated brain method originates from embodied cognition theory which asserts that human embodiment is a necessary aspect of human intelligence and is required to ground significance. [126] [127] If this theory is correct, any completely functional brain design will need to incorporate more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, however it is unidentified whether this would suffice.

Philosophical point of view

“Strong AI” as defined in philosophy

In 1980, philosopher John Searle coined the term “strong AI” as part of his Chinese space argument. [128] He proposed a difference in between 2 hypotheses about expert system: [f]

Strong AI hypothesis: An artificial intelligence system can have “a mind” and “consciousness”.
Weak AI hypothesis: An artificial intelligence system can (just) imitate it believes and has a mind and awareness.

The first one he called “strong” because it makes a stronger statement: it presumes something unique has actually happened to the device that exceeds those capabilities that we can check. The behaviour of a “weak AI” maker would be precisely identical to a “strong AI” maker, but the latter would likewise have subjective mindful experience. This usage is also common in academic AI research study and textbooks. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term “strong AI” to mean “human level artificial general intelligence”. [102] This is not the like Searle’s strong AI, unless it is assumed that consciousness is essential for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most expert system scientists the concern is out-of-scope. [130]

Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, “as long as the program works, they don’t care if you call it genuine or a simulation.” [130] If the program can behave as if it has a mind, then there is no requirement to know if it in fact has mind – undoubtedly, there would be no chance to tell. For AI research study, Searle’s “weak AI hypothesis” is equivalent to the declaration “artificial basic intelligence is possible”. Thus, according to Russell and Norvig, “most AI researchers take the weak AI hypothesis for approved, and don’t care about the strong AI hypothesis.” [130] Thus, for academic AI research study, “Strong AI” and “AGI” are two various things.

Consciousness

Consciousness can have various meanings, and some aspects play significant roles in science fiction and the ethics of artificial intelligence:

Sentience (or “remarkable awareness”): The capability to “feel” perceptions or feelings subjectively, rather than the ability to reason about perceptions. Some philosophers, such as David Chalmers, utilize the term “awareness” to refer specifically to phenomenal consciousness, which is approximately comparable to sentience. [132] Determining why and how subjective experience emerges is known as the difficult issue of consciousness. [133] Thomas Nagel discussed in 1974 that it “seems like” something to be conscious. If we are not mindful, then it does not seem like anything. Nagel uses the example of a bat: we can smartly ask “what does it seem like to be a bat?” However, we are unlikely to ask “what does it feel like to be a toaster?” Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company’s AI chatbot, LaMDA, had attained life, though this claim was extensively challenged by other professionals. [135]
Self-awareness: To have mindful awareness of oneself as a separate individual, specifically to be purposely knowledgeable about one’s own ideas. This is opposed to merely being the “topic of one’s believed”-an os or debugger has the ability to be “conscious of itself” (that is, to represent itself in the exact same way it represents whatever else)-however this is not what people typically suggest when they use the term “self-awareness”. [g]
These characteristics have an ethical dimension. AI sentience would generate concerns of well-being and legal defense, likewise to animals. [136] Other elements of awareness associated to cognitive capabilities are likewise pertinent to the idea of AI rights. [137] Finding out how to incorporate innovative AI with existing legal and social structures is an emergent problem. [138]

Benefits

AGI could have a wide array of applications. If oriented towards such goals, AGI might assist alleviate different problems in the world such as cravings, poverty and illness. [139]

AGI could enhance efficiency and efficiency in a lot of jobs. For example, in public health, AGI might accelerate medical research study, significantly versus cancer. [140] It might take care of the elderly, [141] and democratize access to quick, high-quality medical diagnostics. It could use fun, inexpensive and individualized education. [141] The requirement to work to subsist might end up being obsolete if the wealth produced is properly redistributed. [141] [142] This also raises the concern of the location of people in a radically automated society.

AGI might also assist to make rational choices, and to expect and prevent disasters. It could also help to enjoy the benefits of possibly catastrophic technologies such as nanotechnology or environment engineering, while preventing the associated threats. [143] If an AGI’s main goal is to avoid existential disasters such as human termination (which could be tough if the Vulnerable World Hypothesis turns out to be real), [144] it could take measures to considerably minimize the risks [143] while lessening the impact of these procedures on our quality of life.

Risks

Existential dangers

AGI might represent numerous kinds of existential threat, which are risks that threaten “the premature termination of Earth-originating intelligent life or the permanent and drastic damage of its potential for desirable future advancement”. [145] The threat of human extinction from AGI has actually been the topic of lots of debates, however there is likewise the possibility that the advancement of AGI would cause a permanently problematic future. Notably, it could be utilized to spread and maintain the set of worths of whoever establishes it. If humanity still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI might help with mass monitoring and brainwashing, which might be utilized to develop a stable repressive worldwide totalitarian routine. [147] [148] There is also a risk for the makers themselves. If machines that are sentient or otherwise worthwhile of moral consideration are mass created in the future, participating in a civilizational course that forever disregards their welfare and interests could be an existential disaster. [149] [150] Considering how much AGI could enhance mankind’s future and help in reducing other existential dangers, Toby Ord calls these existential risks “an argument for continuing with due caution”, not for “deserting AI“. [147]

Risk of loss of control and human extinction

The thesis that AI poses an existential danger for people, which this risk requires more attention, is questionable however has been endorsed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking criticized widespread indifference:

So, facing possible futures of incalculable benefits and threats, the specialists are definitely doing everything possible to ensure the best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, ‘We’ll show up in a few years,’ would we just respond, ‘OK, call us when you get here-we’ll leave the lights on?’ Probably not-but this is more or less what is happening with AI. [153]

The possible fate of mankind has actually in some cases been compared to the fate of gorillas threatened by human activities. The comparison states that greater intelligence permitted humanity to dominate gorillas, which are now susceptible in manner ins which they could not have prepared for. As a result, the gorilla has become an endangered types, not out of malice, but merely as a civilian casualties from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to control humanity and that we must take care not to anthropomorphize them and analyze their intents as we would for humans. He said that individuals will not be “wise enough to create super-intelligent makers, yet unbelievably dumb to the point of offering it moronic goals with no safeguards”. [155] On the other side, the concept of instrumental convergence recommends that almost whatever their goals, intelligent agents will have reasons to try to make it through and obtain more power as intermediary steps to attaining these goals. Which this does not require having feelings. [156]

Many scholars who are worried about existential threat advocate for more research study into resolving the “control problem” to answer the concern: what types of safeguards, algorithms, or architectures can developers execute to maximise the likelihood that their recursively-improving AI would continue to act in a friendly, instead of devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could cause a race to the bottom of security preventative measures in order to launch items before rivals), [159] and the usage of AI in weapon systems. [160]

The thesis that AI can pose existential risk likewise has detractors. Skeptics normally state that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other concerns associated with current AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many people outside of the technology market, existing chatbots and LLMs are already viewed as though they were AGI, resulting in further misconception and fear. [162]

Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an irrational belief in a supreme God. [163] Some researchers believe that the interaction projects on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their items. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and scientists, issued a joint declaration asserting that “Mitigating the danger of termination from AI ought to be a worldwide concern alongside other societal-scale dangers such as pandemics and nuclear war.” [152]

Mass unemployment

Researchers from OpenAI estimated that “80% of the U.S. labor force might have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of employees might see at least 50% of their tasks impacted”. [166] [167] They think about office employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make decisions, to interface with other computer system tools, however likewise to manage robotized bodies.

According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be rearranged: [142]

Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can end up miserably poor if the machine-owners effectively lobby versus wealth redistribution. Up until now, the trend seems to be toward the second alternative, with technology driving ever-increasing inequality

Elon Musk considers that the automation of society will require federal governments to adopt a universal fundamental income. [168]

See also

Artificial brain – Software and hardware with cognitive abilities comparable to those of the animal or human brain
AI result
AI safety – Research location on making AI safe and advantageous
AI positioning – AI conformance to the intended objective
A.I. Rising – 2018 movie directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence – Process of automating the application of artificial intelligence
BRAIN Initiative – Collaborative public-private research study initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute – Defunct Oxford interdisciplinary research centre
General game playing – Ability of expert system to play various video games
Generative expert system – AI system capable of producing content in response to triggers
Human Brain Project – Scientific research study task
Intelligence amplification – Use of infotech to augment human intelligence (IA).
Machine principles – Moral behaviours of manufactured devices.
Moravec’s paradox.
Multi-task knowing – Solving numerous device discovering tasks at the exact same time.
Neural scaling law – Statistical law in artificial intelligence.
Outline of expert system – Overview of and topical guide to expert system.
Transhumanism – Philosophical movement.
Synthetic intelligence – Alternate term for or form of expert system.
Transfer learning – Machine knowing strategy.
Loebner Prize – Annual AI competition.
Hardware for expert system – Hardware specially developed and optimized for artificial intelligence.
Weak expert system – Form of artificial intelligence.

Notes

^ a b See below for the origin of the term “strong AI“, and see the academic meaning of “strong AI” and weak AI in the short article Chinese space.
^ AI founder John McCarthy writes: “we can not yet characterize in basic what type of computational procedures we desire to call intelligent. ” [26] (For a conversation of some meanings of intelligence used by expert system scientists, see approach of expert system.).
^ The Lighthill report particularly criticized AI‘s “grand objectives” and led the dismantling of AI research in England. [55] In the U.S., DARPA became determined to fund only “mission-oriented direct research, rather than basic undirected research study”. [56] [57] ^ As AI founder John McCarthy composes “it would be an excellent relief to the remainder of the workers in AI if the developers of brand-new general formalisms would reveal their hopes in a more secured kind than has often held true.” [61] ^ In “Mind Children” [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not “cps”, which is a non-standard term Kurzweil introduced.
^ As specified in a standard AI book: “The assertion that devices could perhaps act intelligently (or, maybe better, act as if they were intelligent) is called the ‘weak AI‘ hypothesis by thinkers, and the assertion that makers that do so are really thinking (instead of imitating thinking) is called the ‘strong AI‘ hypothesis.” [121] ^ Alan Turing made this point in 1950. [36] References

^ Krishna, Sri (9 February 2023). “What is synthetic narrow intelligence (ANI)?”. VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single job.
^ “OpenAI Charter”. OpenAI. Retrieved 6 April 2023. Our objective is to ensure that artificial general intelligence benefits all of humankind.
^ Heath, Alex (18 January 2024). “Mark Zuckerberg’s brand-new objective is creating artificial general intelligence”. The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020.
^ a b c “AI timelines: What do specialists in artificial intelligence expect for the future?”. Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). “Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles”. The New York Times. Retrieved 18 May 2023.
^ “AI pioneer Geoffrey Hinton gives up Google and cautions of danger ahead”. The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad actors from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). “Sparks of Artificial General Intelligence: Early explores GPT-4”. arXiv preprint. arXiv:2303.12712. GPT-4 reveals sparks of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). “The True Threat of Artificial Intelligence”. The New York Times. The real hazard is not AI itself but the method we deploy it.
^ “Impressed by expert system? Experts say AGI is coming next, and it has ‘existential’ risks”. ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential risks to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that mankind requires to make.
^ Roose, Kevin (30 May 2023). “A.I. Poses ‘Risk of Extinction,’ Industry Leaders Warn”. The New York City Times. Mitigating the danger of termination from AI need to be an international concern.
^ “Statement on AI Risk”. Center for AI Safety. Retrieved 1 March 2024. AI professionals caution of danger of extinction from AI.
^ Mitchell, Melanie (30 May 2023). “Are AI‘s Doomsday Scenarios Worth Taking Seriously?”. The New York Times. We are far from developing machines that can outthink us in general ways.
^ LeCun, Yann (June 2023). “AGI does not present an existential risk”. Medium. There is no factor to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), “Long Live AI“, Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as “maker intelligence with the complete variety of human intelligence.”.
^ “The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013”. Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for “human-level” intelligence in the physical symbol system hypothesis.
^ “The Open University on Strong and Weak AI“. Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ “What is artificial superintelligence (ASI)?|Definition from TechTarget”. Enterprise AI. Retrieved 8 October 2023.
^ “Expert system is changing our world – it is on everybody to ensure that it goes well”. Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). “Here is how far we are to accomplishing AGI, according to DeepMind”. VentureBeat.
^ McCarthy, John (2007a). “Basic Questions”. Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based upon the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). “Motivation reassessed: The idea of competence”. Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). “Motivation reassessed: The idea of skills”. Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). “What is AGI?”. Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ “What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence”. Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). “AI is closer than ever to passing the Turing test for ‘intelligence’. What takes place when it does?”. The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ “Eugene Goostman is a genuine kid – the Turing Test says so”. The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ “Scientists dispute whether computer system ‘Eugene Goostman’ passed Turing test”. BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). “People can not identify GPT-4 from a human in a Turing test”. arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). “AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here’s a list of difficult tests both AI variations have actually passed”. Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). “6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It”. Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). “The Plan to Replace the Turing Test with a ‘Turing Olympics'”. Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). “Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response”. Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). “DeepMind’s co-founder suggested checking an AI chatbot’s ability to turn $100,000 into $1 million to measure human-like intelligence”. Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). “Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million”. MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). “Expert System” (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on “AI-Complete Tasks”.).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). “Turing Test as a Specifying Feature of AI-Completeness” (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ “AI Index: State of AI in 13 Charts”. Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). “Artificial Intelligence, Business and Civilization – Our Fate Made in Machines”. Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109.
^ “Scientist on the Set: An Interview with Marvin Minsky”. Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, “Shift to Applied Research Increases Investment”.
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). “Reply to Lighthill”. Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). “Behind Artificial Intelligence, a Squadron of Bright Real People”. The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers prevented the term expert system for worry of being deemed wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ “Trends in the Emerging Tech Hype Cycle”. Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). “The Symbol Grounding Problem”. Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD … 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ “Who created the term “AGI”?”. goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: ‘The term “AGI” was promoted by … Shane Legg, Mark Gubrud and Ben Goertzel’
^ Wang & Goertzel 2007
^ “First International Summer School in Artificial General Intelligence, Main summertime school: June 22 – July 3, 2009, OpenCog Lab: July 6-9, 2009”. Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ “Избираеми дисциплини 2009/2010 – пролетен триместър” [Elective courses 2009/2010 – spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ “Избираеми дисциплини 2010/2011 – зимен триместър” [Elective courses 2010/2011 – winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). “The limits of device intelligence: Despite development in device intelligence, artificial basic intelligence is still a major challenge”. EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). “Sparks of Artificial General Intelligence: Early explores GPT-4”. arXiv:2303.12712 [cs.CL]
^ “Microsoft Researchers Claim GPT-4 Is Showing “Sparks” of AGI”. Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). “The Singularity Isn’t Near”. MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. “Expert system will not become a Frankenstein’s beast”. The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). “Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence”. Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). “Why basic expert system will not be recognized”. Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). “The Doomsday Invention: Will synthetic intelligence bring us paradise or destruction?”. The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of professional opinion. In Fundamental issues of artificial intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. “How We’re Predicting AI-or Failing To.” In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ “Microsoft Now Claims GPT-4 Shows ‘Sparks’ of General Intelligence”. 24 March 2023.
^ Shimek, Cary (6 July 2023). “AI Outperforms Humans in Creativity Test”. Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). “The originality of machines: AI takes the Torrance Test”. Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). “Artificial General Intelligence Is Already Here”. Noema.
^ Zia, Tehseen (8 January 2024). “Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024”. Unite.ai. Retrieved 26 May 2024.
^ “Introducing OpenAI o1-preview”. OpenAI. 12 September 2024.
^ Knight, Will. “OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step”. Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ “OpenAI Employee Claims AGI Has Been Achieved”. Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ “AI Index: State of AI in 13 Charts”. hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ “Next-Gen AI: OpenAI and Meta’s Leap Towards Reasoning Machines”. Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). “The Why, What, and How of Artificial General Intelligence Chip Development”. IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). “Towards artificial basic intelligence with hybrid Tianjic chip architecture”. Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). “The transformational function of GPU computing and deep learning in drug discovery”. Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559.
^ Goertzel & Pennachin 2006.
^ a b c (Kurzweil 2005, p. 260).
^ a b c Goertzel 2007.
^ Grace, Katja (2016 ). “Error in Armstrong and Sotala 2012”. AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020.
^ a b Butz, Martin V. (1 March 2021). “Towards Strong AI“. KI – Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190.
^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). “Intelligence Quotient and Intelligence Grade of Expert System”. Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130.
^ Brien, Jörn (5 October 2017). “Google-KI doppelt so schlau wie Siri” [Google AI is twice as clever as Siri – but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019.
^ Grossman, Gary (3 September 2020). “We’re entering the AI golden zone in between narrow and basic AI“. VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. … So is GPT-3 the first example of an AGI system? This is arguable, however the consensus is that it is not AGI. … If absolutely nothing else, GPT-3 tells us there is a happy medium between narrow and basic AI.
^ Quach, Katyanna. “A developer constructed an AI chatbot utilizing GPT-3 that helped a guy speak again to his late fiancée. OpenAI shut it down”. The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021.
^ Wiggers, Kyle (13 May 2022), “DeepMind’s new AI can perform over 600 jobs, from playing games to controlling robotics”, TechCrunch, archived from the original on 16 June 2022, recovered 12 June 2022.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). “Sparks of Artificial General Intelligence: Early explores GPT-4”. arXiv:2303.12712 [cs.CL]
^ Metz, Cade (1 May 2023). “‘ The Godfather of A.I.’ Leaves Google and Warns of Danger Ahead”. The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023.
^ Bove, Tristan. “A.I. might equal human intelligence in ‘just a couple of years,’ says CEO of Google’s main A.I. research study laboratory”. Fortune. Retrieved 4 September 2024.
^ Nellis, Stephen (2 March 2024). “Nvidia CEO states AI might pass human tests in 5 years”. Reuters. ^ Aschenbrenner, Leopold. “SITUATIONAL AWARENESS, The Decade Ahead”.
^ Sullivan, Mark (18 October 2023). “Why everyone appears to disagree on how to specify Artificial General Intelligence”. Fast Company.
^ Nosta, John (5 January 2024). “The Accelerating Path to Artificial General Intelligence”. Psychology Today. Retrieved 30 March 2024.
^ Hickey, Alex. “Whole Brain Emulation: A Giant Step for Neuroscience”. Tech Brew. Retrieved 8 November 2023.
^ Sandberg & Boström 2008.
^ Drachman 2005.
^ a b Russell & Norvig 2003.
^ Moravec 1988, p. 61.
^ Moravec 1998.
^ Holmgaard Mersh, Amalie (15 September 2023). “Decade-long European research task maps the human brain”. euractiv.
^ Swaminathan, Nikhil (January-February 2011). “Glia-the other brain cells”. Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014.
^ de Vega, Glenberg & Graesser 2008. A large range of views in existing research, all of which need grounding to some degree
^ Thornton, Angela (26 June 2023). “How publishing our minds to a computer might end up being possible”. The Conversation. Retrieved 8 November 2023.
^ Searle 1980
^ For instance: Russell & Norvig 2003,
Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in” Encyclopedia.com”),.
MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in “AITopics”),.
Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.

^ a b c Russell & Norvig 2003, p. 947.
^ though see Explainable synthetic intelligence for interest by the field about why a program acts the method it does.
^ Chalmers, David J. (9 August 2023). “Could a Big Language Model Be Conscious?”. Boston Review.
^ Seth, Anil. “Consciousness”. New Scientist. Retrieved 5 September 2024.
^ Nagel 1974.
^ “The Google engineer who thinks the company’s AI has actually come to life”. The Washington Post. 11 June 2022. Retrieved 12 June 2023.
^ Kateman, Brian (24 July 2023). “AI Should Be Terrified of Humans”. TIME. Retrieved 5 September 2024.
^ Nosta, John (18 December 2023). “Should Expert System Have Rights?”. Psychology Today. Retrieved 5 September 2024.
^ Akst, Daniel (10 April 2023). “Should Robots With Artificial Intelligence Have Moral or Legal Rights?”. The Wall Street Journal.
^ “Artificial General Intelligence – Do [es] the expense exceed advantages?”. 23 August 2021. Retrieved 7 June 2023.
^ “How we can Benefit from Advancing Artificial General Intelligence (AGI) – Unite.AI“. www.unite.ai. 7 April 2020. Retrieved 7 June 2023.
^ a b c Talty, Jules; Julien, Stephan. “What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?”. Smithsonian Magazine. Retrieved 7 June 2023.
^ a b Stevenson, Matt (8 October 2015). “Answers to Stephen Hawking’s AMA are Here!”. Wired. ISSN 1059-1028. Retrieved 8 June 2023.
^ a b Bostrom, Nick (2017 ). ” § Preferred order of arrival”. Superintelligence: courses, threats, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2.
^ Piper, Kelsey (19 November 2018). “How technological progress is making it likelier than ever that humans will damage ourselves”. Vox. Retrieved 8 June 2023.
^ Doherty, Ben (17 May 2018). “Climate alter an ‘existential security danger’ to Australia, Senate query says”. The Guardian. ISSN 0261-3077. Retrieved 16 July 2023.
^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6.
^ a b Ord, Toby (2020 ). “Chapter 5: Future Risks, Unaligned Artificial Intelligence”. The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9.
^ Al-Sibai, Noor (13 February 2022). “OpenAI Chief Scientist Says Advanced AI May Already Be Conscious”. Futurism. Retrieved 24 December 2023.
^ Samuelsson, Paul Conrad (2019 ). “Artificial Consciousness: Our Greatest Ethical Challenge”. Philosophy Now. Retrieved 23 December 2023.
^ Kateman, Brian (24 July 2023). “AI Should Be Terrified of Humans”. TIME. Retrieved 23 December 2023.
^ Roose, Kevin (30 May 2023). “A.I. Poses ‘Risk of Extinction,’ Industry Leaders Warn”. The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023.
^ a b “Statement on AI Risk”. Center for AI Safety. 30 May 2023. Retrieved 8 June 2023.
^ “Stephen Hawking: ‘Transcendence looks at the ramifications of synthetic intelligence – but are we taking AI seriously enough?'”. The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014.
^ Herger, Mario. “The Gorilla Problem – Enterprise Garage”. Retrieved 7 June 2023.
^ “The fascinating Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI“. The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023.
^ “Will Expert System Doom The Human Race Within The Next 100 Years?”. HuffPost. 22 August 2014. Retrieved 8 June 2023.
^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). “Responses to disastrous AGI risk: a study”. Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2.
^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). “The AI Arms Race Is On. Start Worrying”. TIME. Retrieved 24 December 2023.
^ Tetlow, Gemma (12 January 2017). “AI arms race risks spiralling out of control, report cautions”. Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023.
^ Milmo, Dan; Stacey, Kiran (25 September 2023). “Experts disagree over danger posed but expert system can not be disregarded”. The Guardian. ISSN 0261-3077. Retrieved 24 December 2023.
^ “Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)”. CAFE. 20 July 2023. Retrieved 15 September 2023.
^ Hamblin, James (9 May 2014). “But What Would the End of Humanity Mean for Me?”. The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015.
^ Titcomb, James (30 October 2023). “Big Tech is stoking fears over AI, warn researchers”. The Telegraph. Retrieved 7 December 2023.
^ Davidson, John (30 October 2023). “Google Brain founder says big tech is lying about AI termination threat”. Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023.
^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). “GPTs are GPTs: An early appearance at the labor market effect potential of large language designs”. OpenAI. Retrieved 7 June 2023.
^ a b Hurst, Luke (23 March 2023). “OpenAI says 80% of employees might see their tasks affected by AI. These are the tasks most affected”. euronews. Retrieved 8 June 2023.
^ Sheffey, Ayelet (20 August 2021). “Elon Musk says we need universal fundamental earnings because ‘in the future, physical work will be a choice'”. Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023.
Sources

UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021.
Chalmers, David (1996 ), The Conscious Mind, Oxford University Press.
Clocksin, William (August 2003), “Expert system and the future”, Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007.
Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3.
Darrach, Brad (20 November 1970), “Meet Shakey, the First Electronic Person”, Life Magazine, pp. 58-68.
Drachman, D. (2005 ), “Do we have brain to spare?”, Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114.
Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan’s Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4.
Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013.
Goertzel, Ben (December 2007), “Human-level synthetic basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil’s The Singularity Is Near, and McDermott’s critique of Kurzweil”, Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009.
Gubrud, Mark (November 1997), “Nanotechnology and International Security”, Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011.
Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, recovered 30 August 2007.
Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5.
Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press.
Lighthill, Professor Sir James (1973 ), “Artificial Intelligence: A General Survey”, Artificial Intelligence: a paper seminar, Science Research Council.
Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7.
McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer system programs that can fix problems and attain objectives in the world as well as human beings.
Moravec, Hans (1988 ), Mind Children, Harvard University Press
Moravec, Hans (1998 ), “When will computer hardware match the human brain?”, Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006
Nagel (1974 ), “What Is it Like to Be a Bat” (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009
Newell, Allen; Simon, H. A. (1976 ). “Computer Science as Empirical Inquiry: Symbols and Search”. Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022.
Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4
NRC (1999 ), “Developments in Artificial Intelligence”, Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, retrieved 29 September 2007
Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007
Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009
Searle, John (1980 ), “Minds, Brains and Programs” (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020
Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row
Turing, Alan (October 1950). “Computing Machinery and Intelligence”. Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.

de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4
Wang, Pei; Goertzel, Ben (2007 ). “Introduction: Aspects of Artificial General Intelligence”. Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 – through ResearchGate.

Further reading

Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1
Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), “Equal varieties of neuronal and nonneuronal cells make the an isometrically scaled-up primate brain”, The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 – through ResearchGate
Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, recovered 31 August 2012
Cukier, Kenneth, “Ready for Robots? How to Think of the Future of AI“, Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called “Dyson’s Law”) that “Any system basic enough to be reasonable will not be made complex enough to behave intelligently, while any system complicated enough to act wisely will be too made complex to understand.” (p. 197.) Computer scientist Alex Pentland writes: “Current AI machine-learning algorithms are, at their core, dead simple foolish. They work, however they work by strength.” (p. 198.).
Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010.
Gleick, James, “The Fate of Free Choice” (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. “Agency is what distinguishes us from makers. For biological creatures, reason and function come from acting in the world and experiencing the effects. Artificial intelligences – disembodied, complete strangers to blood, sweat, and tears – have no celebration for that.” (p. 30.).
Halal, William E. “TechCast Article Series: The Automation of Thought” (PDF). Archived from the original (PDF) on 6 June 2013.
– Halpern, Sue, “The Coming Tech Autocracy” (review of Verity Harding, AI Needs You: How We Can Change AI‘s Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind’s Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. “‘ We can’t realistically anticipate that those who want to get abundant from AI are going to have the interests of the rest of us close at heart,’ … composes [Gary Marcus] ‘We can’t rely on governments driven by project finance contributions [from tech companies] to push back.’ … Marcus details the demands that citizens need to make of their federal governments and the tech companies. They consist of transparency on how AI systems work; settlement for people if their information [are] used to train LLMs (large language model) s and the right to permission to this usage; and the capability to hold tech business responsible for the harms they trigger by removing Section 230, imposing money penalites, and passing stricter item liability laws … Marcus also recommends … that a new, AI-specific federal agency, similar to the FDA, the FCC, or the FTC, might provide the most robust oversight … [T] he Fordham law professor Chinmayi Sharma … suggests … develop [ing] a professional licensing routine for engineers that would work in a comparable method to medical licenses, malpractice suits, and drapia.org the Hippocratic oath in medicine. ‘What if, like doctors,’ she asks …, ‘AI engineers likewise promised to do no damage?'” (p. 46.).
Holte, R. C.; Choueiry, B. Y. (2003 ), “Abstraction and reformulation in expert system”, Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653.
Hughes-Castleberry, Kenna, “A Murder Mystery Puzzle: The literary puzzle Cain’s Jawbone, which has stymied human beings for years, exposes the restrictions of natural-language-processing algorithms”, Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. “This murder secret competitors has actually exposed that although NLP (natural-language processing) models are capable of incredible accomplishments, their abilities are very much restricted by the quantity of context they receive. This […] could cause [troubles] for scientists who wish to use them to do things such as evaluate ancient languages. Sometimes, there are few historical records on long-gone civilizations to function as training information for such a function.” (p. 82.).
Immerwahr, Daniel, “Your Lying Eyes: People now utilize A.I. to produce phony videos indistinguishable from genuine ones. Just how much does it matter?”, The New Yorker, 20 November 2023, pp. 54-59. “If by ‘deepfakes’ we suggest practical videos produced utilizing expert system that really trick people, then they barely exist. The fakes aren’t deep, and the deeps aren’t phony. […] A.I.-generated videos are not, in general, ghetto-art-asso.com running in our media as counterfeited proof. Their function better resembles that of animations, especially smutty ones.” (p. 59.).
– Leffer, Lauren, “The Risks of Trusting AI: We should prevent humanizing machine-learning designs utilized in scientific research”, Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81.
Lepore, Jill, “The Chit-Chatbot: Is talking with a device a discussion?”, The New Yorker, 7 October 2024, pp. 12-16.
Marcus, Gary, “Artificial Confidence: Even the newest, buzziest systems of synthetic general intelligence are stymmied by the same old problems”, Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45.
McCarthy, John (October 2007), “From here to human-level AI“, Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009.
McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1.
Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007.
Newell, Allen; Simon, H. A. (1963 ), “GPS: A Program that Simulates Human Thought”, in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill.
Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and distributed at the 2007 Singularity Summit, San Francisco, California.
Press, Eyal, “In Front of Their Faces: Does facial-recognition innovation lead cops to disregard contradictory evidence?”, The New Yorker, 20 November 2023, pp. 20-26.
Roivainen, Eka, “AI‘s IQ: ChatGPT aced a [standard intelligence] test however revealed that intelligence can not be determined by IQ alone”, Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. “Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike thinking or an understanding of the physical and social world … ChatGPT appeared unable to reason logically and attempted to depend on its vast database of … truths obtained from online texts. ”
– Scharre, Paul, “Killer Apps: The Real Dangers of an AI Arms Race”, Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. “Today’s AI innovations are effective however undependable. Rules-based systems can not handle circumstances their developers did not expect. Learning systems are limited by the data on which they were trained. AI failures have actually already led to disaster. Advanced auto-pilot features in automobiles, although they perform well in some scenarios, have actually driven cars without alerting into trucks, concrete barriers, and parked cars. In the incorrect circumstance, AI systems go from supersmart to superdumb in an immediate. When an enemy is trying to control and hack an AI system, the dangers are even greater.” (p. 140.).
Sutherland, J. G. (1990 ), “Holographic Model of Memory, Learning, and Expression”, International Journal of Neural Systems, vol. 1-3, pp. 256-267.
– Vincent, James, “Horny Robot Baby Voice: James Vincent on AI chatbots”, London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32.” [AI chatbot] programs are enabled by brand-new innovations however count on the timelelss human tendency to anthropomorphise.” (p. 29.).
Williams, R. W.; Herrup, K.

Bottom Promo
Bottom Promo
Top Promo